Prevalence of *Salmonella typhi* and *paratyphi* infection in children: a hospital based study

B Prajapati, 1 GK Rai, 1 SK Rai, 2 HC Upreti, 3 M Thapa, 3 G Singh 3 and RM Shrestha1

1Department of Pediatric Medicine and 3Department of Clinical Pathology, Kanti Children’s Hospital and 2Shi-Gan Health Foundation/Nat’l Inst of Trop Med & Public Health Research, Kathmandu, Nepal

Corresponding author: Dr. Bina Prajapati, Department of Pediatric Medicine, Kanti Children’s Hospital, Kathmandu, Nepal. e-mail: bina_pm@yahoo.com

ABSTRACT

The purpose of this study was to find out the prevalence and antibiotic sensitivity pattern of *Salmonella typhi* and *paratyphi* isolated from children presenting with fever at Kanti Children’s Hospital in Kathmandu, Nepal. A total of 9,856 blood samples collected for culture during one year period (April 2007 to March 2008) were included in the study. Out of total, 235 (2.0%) were positive for *S. typhi* and *paratyphi A*. Of the total positive, 195 (83.0%) were *S. typhi* and 40 (17.0%) were *S. paratyphi A*. The growth positive rate in two genders (M: 53.2% and F: 46.8%) was not significant (P>0.05). Over two-third of cases were clustered in the age-group of 1-10 years. The occurrence of infections was common in summer months (rainy season). *S. typhi* was found to be most sensitive to cefotaxime (100.0%) followed by ceftriaxone (98.9%), ofloxacin (93.5%), cotrimoxazole (93.5%) and chloramphenicol (93.2%) and was least sensitive to amoxycillin (66.7%) followed by ciprofloxacin (86.6%). *S. paratyphi* also was found to be most sensitive to cefotaxime (100.0%), followed by ceftriaxone (97.4%), cotrimoxazole (97.1%) and chloramphenicol (92.5%) and was least sensitive to amoxycillin (15.0%) followed by ciprofloxacin (51.3%) and ofloxacin (70.3%).

Keywords: *S. typhi*, *S. paratyphi*, prevalence, antibiotic sensitivity, children, Nepal.

INTRODUCTION

Enteric fever is an important public health problem in many underdeveloped and developing countries including Nepal. Though it occurs also in developed countries, the incidence and case fatality rate is very low. The global incidence is estimated to be 21 million with 700,000 deaths each year primarily in South East Asia, Africa and Latin America attributed to rapid population growth and unplanned urbanization, inadequate and improper waste disposal, lack of potable water supply. Outbreaks are more common in summer season affecting mainly children. Infected and healthy carriers are the source of infection and “five Fs” (food, fingers, flies, fomites and faeces) play an important role in the spread of the disease.

Enteric fever is predominantly caused by *S. typhi* followed by *S. paratyphi A*. Though antimicrobial therapy markedly reduces the morbidity and mortality, emergence of resistance to first line antibiotics poses challenge in its management. Resistance to chloramphenical, “gold standard of therapy” since its introduction in 1948, appeared in 1970 leading to many outbreaks in countries in Latin America and Asia. It then resulted into multi drug resistance (MDR: resistant to ampicillin, cotrimoxazole and chloramphenical) in 1989. Fluoroquinolones were the drug of choice for MDR *S. typhi* in Asia during past decade. However, emergence of resistance even to these drugs has become a major setback in the management. Moreover, third generation cephalosporins used as alternative agents are also becoming effectiveless. However, there are reports of re-emergence of sensitivity of *S. typhi* to chloramphenicol. Therefore, it is essential to reappraise the antibiotic sensitivity pattern of the isolates periodically.

Enteric fever in Nepal is more common during the summer months with outbreaks in some areas. As the disease mainly affects children, this paper reports the prevalence and antibiogram of *S. typhi* and *paratyphi A* isolates isolated from children presenting with fever.

MATERIALS AND METHODS

A total of 9,856 children (neonates and children aged up to 14 years) presenting with fever at Kanti Children’s Hospital in Kathmandu, Nepal in one year period (April 2007 to March 2008) were included in this study. Blood samples collected by aseptic venipuncture were subjected for bacteriological culture (1 ml of blood was put in 10 ml brain heart infusion broth) and incubated at 37°C over night followed by sub-culture on MacConkey agar. Growth negative culture was continued incubation for five days sub-culturing in between at the interval of 48, 72 and 96 hours. Growth negative even after 120 hrs incubation were regarded as negative. The non-
lactose fermenting colonies MacConkey agar resembling *Salmonella* were subjected for serotyping using polyvalent and monovalent antisera (Denka-Seiken Company Ltd, Japan).

S. typhi and *paratyphi A* isolates were subjected to antimicrobial susceptibility testing following Kirby-Bauer’s disk diffusion technique using Muller Hinton Agar. Antibiotic discs used in this study included amoxycillin (10mcg), chloramphenicol (30mcg), cotrimoxazole (25mcg), ciprofloxacin (5mcg), ofloxacin (5mcg), ceftriaxone (5mcg) and cefotaxime (5mcg) (Oxoid, Hampshire, UK). The sensitivity and/or resistance results of the tested isolates were recorded following the instructions of the disc manufacturer.

RESULTS

Of the total 9,856 blood samples cultured, 235 (2.0%) were positive for *S. typhi* and *paratyphi A*. Out of the total positive samples, 195 (83.0%) were *S. typhi* and 40 (17.0%) were *S. paratyphi A*. *S paratyphi B* and *C* were not isolated. The overall growth positive rate was relatively higher in male (53.2%) compared to female (46.8%) child but the difference was not significant statistically (P>0.05) (Table-1). Similar trend in growth positivity of *S. typhi* (M: 52.8% and F: 47.2%) and *paratyphi A* (M: 55.0% and F: 45.0%) was observed in both sexes. Over two third of growth positive cases were seen in the age-group of 1-10 years. The occurrence of enteric fever was higher in summer months (rainy season) (Fig.-1).

S. typhi was found to be most sensitive to cefotaxime (100.0%) followed by ceftriaxone (98.9%), ofloxacin (93.5%), cotrimoxazole (93.5%) and chloramphenicol (93.2%). It was least sensitive to amoxycillin (66.7%) followed by ciprofloxacin (86.6%) (Table-2). *S. paratyphi A* also was found to be most sensitive to cefotaxime (100.0%), followed by ceftriaxone (97.4%), cotrimoxazole (97.1%) and chloramphenicol (92.5%) and was least sensitive to amoxycillin (15.0%) followed by ciprofloxacin (51.3%) and ofloxacin (70.3%) (Table-3).

DISCUSSION

Enteric fever is common in developing countries including Nepal. It is attributed to rapid population growth and unplanned urbanization, inadequate and improper waste disposal, lack of potable water supply. Emergence of drug resistance in the organism pose great challenge. Physicians, therefore, should always be aware of the antibiotic sensitivity/resistance profile of the organism in a given community for the rational use of antibiotics.

In this study, children aged 1-10 years were mostly affected (over two-third of the growth positive cases). However, Ansari *et al* have reported two-third of the cases in the age group of 4-9 years. However, under-five children were found to be mostly affected in India. Though enteric fever is rare among under-one year of age, five cases (2.1%) were found in this study. Interestingly, *S. typhi* was isolated also from a one-month-old infant. Reed *et al* also reported similar finding and postulated that the bacteria might have transmitted through vertical route.

Though males had marginally higher incidence, it was not significant (male to female ratio of 1.1:1). Similar finding has been reported from neighboring country India. A slightly different male to female ratio has been
reported by Bhattarai et al (1.2:1)14 and Ansari et al (1.3:1)18 in the valley. The male preponderance seen could be due to their relatively more outdoor activities exposing them to the source of infection.

As reported by Malla et al,2 this study also showed higher incidence of cases during summer season. This appeared to be due to contamination of drinking water and environment with fecal matter. The streets in the city become flooded by rainwater mixed with bad smelling safety tank overflow attributed to virtually non-existent or insufficient sewerage system. This situation has been explained to be associated with the re-emergence of hookworm (parasite) recently.23 Water samples (collected from natural spout, well and hand pump) and from different points of distribution system (tap water) in Kathmandu Valley have shown fecal contamination.24 Similar findings have also been found in other parts of the country (unpublished data).

The incidence of S. typhi and S. paratyphi A seen in this study was similar to finding reported by Mubeena et al25 from Pakistan. In the contrary, Malla et al2 have reported lower percentage of S. typhi cases from Nepal. This difference could be due to the inclusion of adult and elderly population by them.

S. typhi was most sensitive to cefotaxime followed by ceftriaxone, ofloxacin, cotrimoxazole and chloramphenicol in this study. This was in agreement to previous findings.14,18 However, much lower sensitivity (69.1\%) has also been reported.26 Very small percentage (1.1\%) of S. typhi was resistance to ceftriaxone as was in agreement with the findings reported from Pakistan.12,25 One hundred percent sensitivity to ceftriaxone has been reported by other investigators also2,8,15,18 The resistance of S. paratyphi to ceftriaxone seen in this study was slightly higher and was in agreement with report from Pakistan.25 However, Bhatia et al,8 from India has reported 100.0\% sensitivity. The sensitivity rate of isolates against ciprofloxacin in this study was lower compared with previous reports from Nepal2,14,26,27 and India.15 Nair et al15 have shown an increasing trend of resistance to ciprofloxacin (from 0.0\% in 1995 to 12.5\% in 2003) indicating wide use of the drug in treating different kinds of infections. In this study, 93.5\% of S. typhi strains were sensitive to ofloxacin. This observation was slightly lower than those reported by other workers.8,12,25,26

In this study, sensitivity to chloramphenicol was high enough (over 92.0\%). This observation was similar to the findings reported by other investigators from Nepal.26 Bhatia et al8 in India have reported 96.0\% and 100.0\% sensitivity of S. typhi and S. paratyphi, respectively. Nair et al15 have shown decreasing trend in resistance to chloramphenicol (50.0\% in 1995 to 12.5\% in 2003). Malla et al2 have also reported decreasing resistance pattern to chloramphenicol (30.0\% in 2002 to 5.0\% in 2004). On

\begin{table}[h]
\centering
\caption{Antibiotic sensitivity pattern of S. typhi (n=235)}
\begin{tabular}{|c|c|c|c|}
\hline
Antibiotics & Isolates (n) & Sensitive & Intermediate & Resistance \\
\hline
Amoxycillin & 195 & 130 (66.7\%) & 29 (14.8\%) & 36 (18.5\%) \\
Ciprofloxacin & 194 & 168 (86.6\%) & 22 (11.3\%) & 4 (2.1\%) \\
Chloramphenicol & 192 & 179 (93.2\%) & 1 (0.5\%) & 12 (6.3\%) \\
Ceftriaxone & 183 & 181 (98.9\%) & 0 & 2 (1.1\%) \\
Ofloxacin & 169 & 158 (93.5\%) & 0 & 11 (6.5\%) \\
Cotrimoxazole & 169 & 158 (93.5\%) & 0 & 11 (6.5\%) \\
Cefotaxime & 20 & 20 (100.0\%) & 0 & 0 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Antibiotic sensitivity pattern of S. paratyphi (n= 40)}
\begin{tabular}{|c|c|c|c|}
\hline
Antibiotics & Isolates (n) & Sensitive & Intermediate & Resistance \\
\hline
Amoxycillin & 40 & 6 (15.0\%) & 27 (67.5\%) & 7 (17.5\%) \\
Chloramphenicol & 40 & 37 (92.5\%) & 1 (2.5\%) & 2 (5.0\%) \\
Ciprofloxacin & 39 & 20 (51.3\%) & 12 (30.8\%) & 7 (17.9\%) \\
Ceftriaxone & 39 & 38 (97.4\%) & 0 & 1 (2.6\%) \\
Ofloxacin & 37 & 26 (70.3\%) & 8 (21.6) & 3 (8.1\%) \\
Cotrimoxazole & 34 & 33 (97.1\%) & 0 & 1 (2.9\%) \\
Cefotaxime & 9 & 9 (100.0\%) & 0 & 0 \\
\hline
\end{tabular}
\end{table}
the other hand, Mubeena et al25 in Pakistan found very low sensitivity to this drug (27.0%). Low sensitivity (60.0%) has also been reported in eastern Nepal.27

In this study, it was worth noting of higher sensitivity to cotrimoxazole (over 93%). This was higher than those reported earlier (64.3% by Bhattarai et al14 and 74.4% by Mubeena et al25). The resistance pattern of the isolates to cotrimoxazole during recent years is decreasing (from 80.0% in 1995 to 37.7% in 2003 in India)15 and (from 30.0% in 2002 to 5% in 2004 in Nepal).2

Two-third of \textit{S. typhi} were sensitive to amoxycillin. It was similar to the finding of Bhattarai et al.14 On the contrary, Rauniar et al27 observed higher sensitivity rate to this drug (80.0%). On the other hand, another study done in India22 showed very low sensitivity (40%). \textit{S. paratyphi} was found to be most sensitive to cefotaxime, followed by ceftriaxone, cotrimoxazole and chloramphenicol. Fifteen percent of \textit{S. paratyphi} was sensitive to amoxycillin.

Although the culture positive rate for \textit{S. typhi} and \textit{S. paratyphi A} was only 2.0% of total blood culture samples collected from feverish child, it still indicates the major public health importance of this disease in Nepal. Despite the use of only seven antibiotics for sensitivity testing, these findings help know the present status of enteric fever among Nepalese children. It is advisable to do the sensitivity test of cefixime - the recommended drug in the treatment of enteric fever. Considering the changing drug sensitivity pattern (sensitive to resistance and vice-versa) it is advisable to do continuous evaluation of sensitivity-resistance pattern of isolates as to make rational use of antibiotics in the management of enteric fever cases in future.

REFERENCES

