Cranio facial anthropometric measurements among Rai and Limbu community of Sunsari District, Nepal

O Shrestha,1 S Bhattacharya,2 N Jha,3 S Dhungel,2 CB Jha,2 S Shrestha2 and U Shrestha4

Department of Anatomy, 1Nepal Medical College, Jorpati, Kathmandu, 2BP Koirala institute of Health Sciences, Dharan, 3Department of Community Medicine BP Koirala institute of Health Sciences, Dharan, Nepal, 4Universal College of Medical Sciences, Bhairawa, Nepal

Corresponding author: Om Shrestha, Department of Anatomy, Nepal Medical College, Jorpati, Kathmandu, Nepal

ABSTRACT
Anthropometry is applied to obtain measurements of living subjects for identifying age, stature, and various dimensions related to particular race or an individual. Population based cross sectional study was carried out in Dharan and its neighbouring areas with the help of departments of Anatomy and Community Medicine, B.P. Koirala Institute of Health Sciences, Dharan. This study included 444 healthy people aged 25-50 years belonging to pure race of Rai and Limbu communities. Head length, nasal ergonomics and total stature were measured for each selected individual. Student’s t test was applied to identify significance of the variables. Except nasal breadth of Limbu, the results showed a significant variation (p<0.001) in all parameters between male and female of both the communities. It was also revealed that Limbu males and females were taller with larger head length, longer nasal length and nasal height. Similarly nasal breadths of Limbu females were broader where as in males, Rai had broader nose than that of the Limbu. Therefore it was concluded that anthropometric measurements can play significant role in determining the sex and ethnicity of characteristic pure races of national importance.

Keywords: Anthropometry, head length, nasal length, nasal breadth, nasal height and total stature.

INTRODUCTION
Anthropometry is the hallmark technique that deals with the study of body proportion and absolute dimensions that vary widely with age and sex within and between racial groups. Over the centuries, there have been remarkable changes in Anthropometric measurements due to geographical, cultural, genetic and environmental factors as well as world wide mingling of races. Therefore, isolation of pure races has proved to be a difficult problem. However, anthropometric studies continue to play an important role in distinguishing pure race and local mingling of races.

Anthropometric variables differ in different parts of the world and is influenced by sex, age, ethnicity, geographical distribution and since few studies related to anthropology have been carried out in Eastern Nepal, therefore, the present study was designed in order to provide database of certain Anthropometric measurements for Rai and Limbu ethnic races of Eastern Nepal so that it would be further useful as essential tool to the researchers, clinicians and forensic experts related to this field.

MATERIALS AND METHODS
In the present study, subjects whose parent and grand parent (both maternal and paternal) did not have intercast marriage were considered as pure race.

Rai and Limbu communities are placed in Mongoloid groups who have migrated from Tibet as well as from Northen Burma, Assam, Bhutan and Sikkim during 200 B.C. These people are scattered in eastern and central hill districts of Nepal. Mongoloid features include depressed nasal groove and rounded jaws. The overall face presents rounded and short slanted integumental lip, straight black hair, short medium build and muscular bodies.

Following the Research and Ethical committee of institute clearance, a total number of 444 healthy people (210 males and 234 females) aged between 25-50 years belonging to pure race of Rai and Limbu communities of Sunsari district of Eastern Nepal were selected with door to door visit using multistage sampling technique (Table-1). Purpose of the study was conveyed and confidentiality and anonymity was assured for each member involved in this study. Consent was received from each subject. Persons with any genetic , growth related disorders such as diabetes mellitus and other endocrine, gastro intestinal, cardiac and renal disorders or having any visible tumors , history of trauma etc were not included in this study. Pregnant lady and the subjects born of parent and grandparents (maternal and paternal) of two different ethnic races were also excluded.

Considering the convenience of each subject, the personal, present and past histories were taken. Presence of any growth related disorders and visible edema was also noted. Following this, the subject was asked to sit comfortably in a stool with arm hanging by side and head positioned in Frankfurt plane. All the measurements
i.e., maximum head length, nasal length, nasal breadth, nasal height were taken by using sliding caliper (straight and curved type). Finally, the person was advised to stand straight against the vertical scale (Martin type anthropometer) without shoes or slippers and measurement for total stature was taken.

All the collected data were summarized using SPSS version and their significance was tested by student ‘t’ test.

RESULTS
The statistical analysis was done firstly between male and female of same race and later on the analysis was performed between Rai and Limbu community persons of same sex by using student ‘t’ test. All the parameters were taken in millimeters.

When different parameters were compared among males and females of same race (Table-2), it was observed that all the values were higher in male. Table-2 also showed statistically significant difference (P<0.001) in all parameters except nasal breadth between male and female of Limbu community which was not statistically significant.

Table-3 showed that except nasal breadth of male, the male and female from Limbu community had larger head length, longer nasal length, nasal breadth, nasal height and total height compared to that of Rai community, where as Rai males had broader nasal breadth than Limbu males. Further comparison from Table-3 showed significant difference in nasal length (P<0.05), nasal breadth, nasal height and total height (P<0.001) of females between Rai and Limbu but when comparison were done between the males of two communities, significant difference was found only in total height (P<0.01).

DISCUSSION
The result of this study showed significant difference (P<0.001) in head length between males and females with males having higher values compared to the females of same community where as comparison were done between the sexes of two communities no significant difference was noted between Rai and Limbu. For pure ethnic races or Rai and Limbu, no such scientific somatometric data was available which indicate the head length, nasal ergonomics and total stature to mark the difference. However critical survey suggested that race as well as sex can be determined accurately with head measurements, which varied between major races and even smaller ethnic groups. Besides this, several studies revealed marked differences exist in cranial shape between males and females, head length of males being larger than the females.

The human nose differs in anatomy and morphology among racial groups. The racial and ethnic morphometric differences in the nasal ergonomics in the world population have been the focus of investigation. The size, shape and proportion of the nose is very valuable for cosmetic and plastic surgeons, undertaking repair and reconstruction of the nose.

Present study demonstrated that there were racial as well as sexual differences in nasal ergonomics. Several studies showed sexual differences in NL, NB and NH. The study conducted by Milgrim (1996) also showed that there were racial differences in nasal breadth. They found the mean nasal breadth of white females was 31 mm and South American females 34.4 mm. We also found differences in nasal breadth between females of two communities. Nasal breadth of females of Rai was (36.01) and Limbu’s (37.73) respectively. According to his study, the mean nasal height of Caribbean females were 18.4 mm, Whites (19.7 mm) and Central Americans (19.3 mm) which showed considerable difference than the results in the present study population which ranged from 12.93 mm among Rais and 13.91 mm among Limbus. However, nasal length of Rai females (42.02 mm) and Limbu females (42.67 mm) as observed in this study, presented similar values like Caribbeans (39 mm), Central Americans (39.5 mm) and South Americans (42 mm). However we could not find any reference to compare the values obtained for nasal height in males.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Race</th>
<th>Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length</td>
<td>Rai</td>
<td>179.96±4.78</td>
</tr>
<tr>
<td>(HL)</td>
<td>Limbu</td>
<td>180.01±5.05</td>
</tr>
<tr>
<td>Nasal length</td>
<td>Rai</td>
<td>46.81±3.04</td>
</tr>
<tr>
<td>(NL)</td>
<td>Limbu</td>
<td>47.07±3.88</td>
</tr>
<tr>
<td>Nasal breadth</td>
<td>Rai</td>
<td>38.36±2.58</td>
</tr>
<tr>
<td>(NB)</td>
<td>Limbu</td>
<td>38.05±2.28</td>
</tr>
<tr>
<td>Nasal height</td>
<td>Rai</td>
<td>14.78±1.94</td>
</tr>
<tr>
<td>(NH)</td>
<td>Limbu</td>
<td>14.82±1.78</td>
</tr>
<tr>
<td>Total height</td>
<td>Rai</td>
<td>1577.32±55.70</td>
</tr>
<tr>
<td>(TH)</td>
<td>Limbu</td>
<td>1601.06±64.96</td>
</tr>
</tbody>
</table>

***P<0.001, **P<0.01
Standing height is an ideal technique for estimating the stature of individuals, which helps in determining the levels of nutritional support and monitoring the effect of nutritional intervention. Both genetic and environmental influences on stature had a significant carry over effect from birth to late adolescence. When community wise and sex wise comparisons were performed by us, it showed statistically significant difference with males being taller than females.

Study conducted by Kertzman H et al found significant difference (p<0.001) in total height between different ethnic groups in both sexes. Researchers found differences in the average height of Caucasian Americans (180.6 cm) and Japanese (171.8 cm) revealing that the Caucasian Americans were significantly taller (p<0.001) than Japanese which they suggested due to genetic effect. Results from several other studies have shown that the height of male and female varies with males being taller than the females. Singh SP et al found the average height of Jat-Sikh male to be 170.4 cm which was significantly different from the mean height of females.

The results of this study revealed a clear ethnic as well as sex variations in physical parameters. The sex and ethnicity had considerable effect in cranial, facial and height related anthropometric measurements. The two communities studied though belongs to same race (mongoloid) showed significant variation possibly due to multifactorial etiological factors i.e. environment, genetic, geography, nutrition and other related factors which played significant roles. This study has provided data on physical variations but the actual scientific reasons for this sexual and ethnic variations are still not clear. Therefore, there is a need for further studies to establish the scientific reasons for variation in measurements among these pure race ethnic study populations of Nepal.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Gender</th>
<th>Rai</th>
<th>Limbu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length (HL)</td>
<td>Male</td>
<td>179.96±4.78</td>
<td>180.01±5.05</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>171.32±5.87</td>
<td>173.13±5.40</td>
</tr>
<tr>
<td>Nasal length (NL)</td>
<td>Male</td>
<td>46.81±3.04</td>
<td>47.07±3.88</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>42.02±2.74</td>
<td>42.67±2.90*</td>
</tr>
<tr>
<td>Nasal breadth (NB)</td>
<td>Male</td>
<td>38.36±2.58</td>
<td>38.05±4.28</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>36.01±2.10</td>
<td>37.73±3.70***</td>
</tr>
<tr>
<td>Nasal height (NH)</td>
<td>Male</td>
<td>14.78±1.94</td>
<td>14.82±1.78</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>12.93±1.83</td>
<td>13.91±2.66***</td>
</tr>
<tr>
<td>Total height (TH)</td>
<td>Male</td>
<td>1577.32±55.70</td>
<td>1601.06±64.96***</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1486.55±40.37</td>
<td>1510.34±48.47***</td>
</tr>
</tbody>
</table>

*P<0.05, **P<0.01, ***P<0.001

Standing height is an ideal technique for estimating the stature of individuals, which helps in determining the levels of nutritional support and monitoring the effect of nutritional intervention. Both genetic and environmental influences on stature had a significant carry over effect from birth to late adolescence.

When community wise and sex wise comparisons were performed by us, it showed statistically significant difference with males being taller than females.

Study conducted by Kertzman H et al found significant difference (p<0.001) in total height between different ethnic groups in both sexes. Researchers found differences in the average height of Caucasian Americans (180.6 cm) and Japanese (171.8 cm) revealing that the Caucasian Americans were significantly taller (p<0.001) than Japanese which they suggested due to genetic effect. Results from several other studies have shown that the height of male and female varies with males being taller than the females. Singh SP et al found the average height of Jat-Sikh male to be 170.4 cm which was significantly different from the mean height of females.

The results of this study revealed a clear ethnic as well as sex variations in physical parameters. The sex and ethnicity had considerable effect in cranial, facial and height related anthropometric measurements. The two communities studied though belongs to same race (mongoloid) showed significant variation possibly due to multifactorial etiological factors i.e. environment, genetic, geography, nutrition and other related factors which played significant roles. This study has provided data on physical variations but the actual scientific reasons for this sexual and ethnic variations are still not clear. Therefore, there is a need for further studies to establish the scientific reasons for variation in measurements among these pure race ethnic study populations of Nepal.

REFERENCES

therapy for impetigo, providing rapid clinical and bacteriologic resolution. Topical fusidic acid may be more effective than oral antibiotics for limited non bullous impetigo and staphylococcal infections.

Fusidic acid is an antibiotic that belongs to a group of its own the fusidanes. The molecule has a steroid-like structure but does not posses any steroid like activity. The antimicrobial activity of fusidic acid is specially aimed at the most common skin pathogens including staphylococcus aureus towards which it is one of the most potent antibiotics. Fusidic acid is effective in the treatment of mild to moderate skin and soft tissue infections.

Fusidic acid and mupirocin have been recommended for the treatment of acute staphylococcal skin lesions but long term use of more than 10 days may develop resistance. Another study shows that mupirocin and fusidic acid gave good results in treating primary and secondary skin infections.

Our study showed that with the use of topical fusidic acid over the wound in absorbable stitches, the infection rate was almost 6 times lower as compared to standard povidone-iodine dressing. The majority of wound infection occurred with growing age and in repeated caesarean sections. Therefore the use of topical fusidic acid can be safely recommended for the prevention of wound infection (surgical site infection).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Infection</th>
<th>No infection</th>
<th>Total n=70</th>
</tr>
</thead>
<tbody>
<tr>
<td>With fusidic acid</td>
<td>1 (2.8)</td>
<td>34 (97.1)</td>
<td>35</td>
</tr>
<tr>
<td>Without fusidic acid</td>
<td>6 (17.1)</td>
<td>29 (82.8)</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>7 (10.0)</td>
<td>63 (90.0)</td>
<td>70</td>
</tr>
</tbody>
</table>

X² = 3.967, df = 2, P= 0.0460 (significant)

REFERENCES